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Exact Solution of a Three-Component System 
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A model three-component system is considered in which the bonds of a 
honeycomb lattice are covered by rodlike molecules of types AA, BB, and AB. 
The ends of molecules near a common lattice site interact with energies eAa, 
eBB, and CAB. The model is equivalent to an Ising model on the 3-12 lattice. 
Exact results are obtained for the two-phase coexistence curves in the isothermal 
composition plane. 
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lattice. 

1. I N T R O D U C T I O N  

Wheeler and W i d o m  (~) in t roduced a lattice model  of a three-component  
solution in which each bond  of  the lattice is covered by a rodlike molecule 
of  type AA,  BB, or AB. The ends of molecules near a c o m m o n  lattice site 
interact with energy eA~ if both  ends are of  type A, eBB if bo th  ends are of 
type B, and eA~ if one end is of  type A and the other  end is of  type B. A 
typical molecular  configurat ion for the model  on the honeycomb  lattice is 
illustrated in Fig. 1. 

Under  the simplifying assumpt ion  that  a type A and a type B 
molecular  end near a c o m m o n  site repel infinitely (~3AB--* O0 ), and that  like 
ends do not  interact (eAA =~Bn=O) ,  the model  has only two reduced 
activities as the rmodynamic  variables and can be easily mapped  onto  the 
s tandard Ising model  on the same lattice. The bulk and interfacial proper-  
ties of  this special case of  the model  have been previously studied/~'2) 
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Fig. 1. Configuration of molecules on the honeycomb lattice. The type A and type B 
molecular ends are represented by balls of two different sizes. 

In the present paper we study the model on the honeycomb lattice 
with general finite interactions eAA , eBB , and eAS. Exact results are 
obtained for the two-phase coexistence curves in the isothermal com- 
position plane. 

2. IS ING R E P R E S E N T A T I O N  OF T H E  M O D E L  

As has been shown previously, ~3'4) the model with general finite 
interactions is equivalent to an Ising model on a line graph. (A line graph 
is a graph A that can be covered by a set of complete graphs such that each 
vertex of A is covered by exactly two complete graphs. A complete graph 
Cv is a graph containing v vertices together with links joining every pair of 
vertices.) 

The line graph A associated with the model on the honeycomb lattice 
is called the 3-12 lattice and is illustrated in Fig. 2. Each site of the 3-12 
lattice is covered by a vertex from one C3 and from one C2 graph. 

If we let Si = +1 (S i=  - 1 )  indicate that site iE A is occupied by a type 
A (type B) molecular end, then we can formally write the grand canonical 
partition function for the model on the 3 12 lattice A as 

•A= ~, e x p [ - H A ( { S i } ) / k T  ] (1) 
{si} 
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The 3-12 lattice, each site of which is covered by one Ca graph and one Cz graph. 

where the Hamil tonian  is given as 

HA({S,})= ~ { e A A (  1 ~ - S i ) ( 1  ~ - S j ) ' J V ~ B B ( 1  - - S i ) ( 1  - S ]  ) 
(i,j) c C3 

+ eAB[(1 -- Si)(1 § Sj) § (1 § S~)(1 - Sj)] }/4 

- Z {#AA(I+S~)(I+Sj)+I~BB(1--S~)(1--Sj) 
(i,j) ~ C2 

+ (2) 

Collecting terms in Eq. (2), we see that  the Hamil tonian,  except for a con- 
stant term, can be written as 

HS({S,})=J, Z S, Z S, S j - h , Z  S, (3) 
(i,j) = C3 ( i , j )  = (72 i ~ A 

where Jl = (eAA + eBB -- 2eAB)/4, /tl = (2#AB - -  ~ A A  - -  ~ B B ) / 4 ,  and hr = 
(gBB--eAA)/2--(#~B--I~AA)/4. The general W h e e l e r - W i d o m  model  on the 
honeycomb  lattice is thus equivalent to an Ising model  on the 3-12 lattice. 
Since vacant  sites are not  allowed, the model  is considered in the limit 
where the chemical potentials #AA, #BB, and #A~ all tend to infinity; 
however, differences such as #AB--]AAA or #AB--~BB are finite ther- 
modynamic  variables. 

By studying the zeros of  the grand canonical  part i t ion function of the 
equivalent lattice gas on the line graph, it was proved (3) that  there are no 
phase transitions in the model  if J ~ > 0 .  The Lee Yang circle theorem (5) 
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ensures there are no phase transitions in the model  if J 1 <  0, #1 < 0 ,  and 
h1~0 .  

In  the present paper  we shall present exact results for the model  on the 
honeycomb  lattice for the c a s e  Ji < O, #1 < O, and hi = 0. For  this range of 
parameters,  phase separat ion into an AA-rich and a BB-rich phase occurs 
at sufficiently low temperatures.  

3. EXACT C O E X I S T E N C E  C U R V E S  

In order  to study the Whee l e r -Widom model  on the h o n e y c o m b  lat- 
tice, we first obtain the canonical  part i t ion function for the equivalent Ising 
model  on the 3-12 lattice, Z3q2(R , L), where R = - J l / k T  and L = -#1/kT.  
Syozi (6)'2 has related Z3qz(R, L) for a 3-12 lattice containing 3N sites to the 
part i t ion function Zu(K)  for an Ising model  on a honeycomb  lattice which 
contains N sites. His method  is outlined in Appendix A. The result is 

where 

Z3_12(J , L)  = A N ZH(K ) (4) 

Here 

/3-12 = ](Si)i~AI 

is the magnet izat ion of the 3-12 lattice and 

0"3_12 = (SiSj)i,jcc2 

(Note  that  SiSj = 1 if an AA or a BB molecule covers C 2 and SiSj - -  - 1  if 
an AB molecule covers C2.) 

2 See also the references in Ref. 6, especially Refs. 7 and 8. 

A 4 = e 4R(e4R -t- 3)(e 4R -- 1) 3 sinh 3 2L/sinh 3 2K (5) 

The parameters  K, L, and R are related as 

coth K =  coth L (e 4R + 3)/(e 4R - 1) (6) 

The mole fractions of  AA, BB, and AB molecules in the model  can be 
calculated from the relationships 

XAA + X88 + XAB -= 1 

IXAA -- XBB I = 13_12 

XAB = (1 -- a3_12)/2 (7) 
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An exact expression for 03_12 , derived in Appendix B, is 

0"3_12 = [2c~K~(~c) sinh 2 K -  cosh 2K]/(3 sinh 2L) + coth 2L (8) 

where, letting z = e x p ( -  2K) 

0~ = (1 - -Z4)(Z 2 - 4 z +  1)/[,~ I 1 -z21 (1 - z )  4] (9) 

~/ 2 
KI(~c) = (1 - ~c sin 2 ~b) -~/2 d~b (10) 

'~0 

= 16z3(1 + z 3 ) ( 1 - z ) - 3 ( 1 - - z 2 )  -3 (11) 

From Eq. (6) we find z explicitly in terms of L and R as 

e 2L(e4R + 1) + 2 
Z= e4R+ 1 +2e  -2L (12) 

The spontaneous magnetization of the 3-12 lattice is given by the exact 
expression 

(e4R + 3)i/2(e4R _ 1)1/2(1 _/r 
13-12 = e 4R + 1 + 2e 2L (13) 

Equation (13) is used to determine the coexistence curves in the model. A 
derivation of Eq. (13) will be published elsewhere. (9~ 

We now consider the range of parameters J l < 0 ,  /~1<0, h i = 0 .  
Equation (6) indicates that this case corresponds to a ferromagnetic 
( K > 0 )  Ising model on the honeycomb lattice. Since the ferromagnetic 
Ising model on the honeycomb lattice has a critical point at exp(2K,)= 
2 + ,~/-~,(10) then from Eqs. (4) and (6), the critical parameters L, and R, for 
the Ising model on the 3-12 lattice are related as 

coth Lc = x/3 ( e  4Re - -  1 )/(e 4Re q-  3) (14) 

The critical point in the three-component solution model is called a plait 
point. 

For plotting purposes, we define the reduced parameters #' = #1/J~ and 
T' = -kT/J~.  Figure 3 gives a plot of/~'c versus T' c for the Wheeler-Widom 
model on the honeycomb lattice. The maximum possible value of T'c, which 
occurs 'when/~'c ~ o% is given by Eq. (14) as 

max T'~ = 4/ln(3 + 2 , , ~ )  = 2.143... (15) 

Equations (7) and (13)-(15) imply that if T'c<2.143..., phase 
separation into an AA-rich and a BB-rich phase occurs if/~' is sufficiently 
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Fig. 3. A plot  of T'c versus #'~ at the plait point.  #'c--* oo as T ' c~4 / ln (3  + 2 x / 3 ) = 2 . 1 4 3  .... 

large. Likewise, at a fixed/~' > 0, phase separation occurs at sufficiently low 
temperatures (see Fig. 3). In a previous paper, ~4) we used the Peierls 
argument to prove that this type of phase separation also occurs in the 
model on the square and simple cubic lattices. 

Using Eqs. (7)-(13), we have plotted isothermal coexistence curves for 
the model in Fig. 4. As T'--* 0, the model becomes equivalent to an Ising 
model on the honeycomb lattice with K =  L [-see Eq. (6)]. The coexistence 
curve in this low-temperature limit is the same as the coexistence curve 
obtained for the special case of the model studied by Wheeler and 
Widom (1'2) for which J l ' - '+  - - o 0 .  This is also the coexistence curve at con- 
stant/~' as #'--* 0. 

As #'--* c~, XA~--*  0 and the model becomes equivalent to an Ising 
model on the Kagom4 lattice with coupling constant R. The limiting form 
of the spontaneous magnetization of the Kagom4 lattice (11) yields, as T' 
max T'c = 2.143..., 

IXAA - -  X B B  [ ~ Ac(1 - T'/max T'c) 1/8 (16) 

where A c is a constant. 
At the plait point, it follows from Eqs. (7)-(12) and 

c _ _  c X AA -- X sB and 

1 ( 3 cosh 2L~ - 2"] 

(14) that 

(17) 
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AB 
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Fig. 4. Isothermal coexistence curves at the temperature TI, ~ --, 0, Tib ) = 1.5, Tic ) = 2.0. The 
c o e x i s t e n c e  c u r v e  s h r i n k s  to  a p o i n t  at  T' = 2 .143  .... 

where  L C is g iven  by  Eq.  (14)  as a f u n c t i o n  of  T'  c = R c  1. A p lo t  o f  X~4 ~ ver- 

sus T' C is g iven  in Fig.  5. As  T' C ~ m a x  T' c, X~B ~ 0 l inear ly  in T' c. T h e  
m a x i m u m  va lue  o f  X ] B  occurs  as T'c ~ 0. E q u a t i o n s  (14)  a n d  (17)  y ie ld  

m a x  X ~  = (9 - 4 x / 3 ) / 1 8  = 0.1151.. .  (18)  

Fig.  5. 
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A plot of X ~  versus T'c at the plait point. The maximum value of X ~  is 
(9 4 ~ ) / 1 8 = 0 . 1 1 5 1 . . . ,  w h i c h  o c c u r s  as  T'~O. A s  T; --, 2.143..., X ~ B ~ 0 .  
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Hence, there is no phase separation into AA-rich and BB-rich phases in a 
system for which XA~ > 0.1151. The presence of AB molecules thus greatly 
enhances the miscibility of AA and BB molecules. 

The case J z<  0, ~t~> 0, hi = O, corresponding to an antiferromagnetic 
( K < 0 )  Ising model on the honeycomb lattice, can also be solved by the 
above method. For this range of parameters an ordered phase, consisting 
mainly of AB molecules, occurs at sufficiently low temperatures. In this 
phase most of the sites of one sublattice of the honeycomb lattice are 
surrounded by type A molecular ends, the sites of the other sublattice being 
surrounded by type B molecular ends. (1'4) 

APPENDIXA.  CALCULATION OF Z3_la(R, L) 

We shall here outline Syozi's C6) method for calculating the partition 
function for an Ising model on the 3-12 lattice (see Fig. 2) with a coupling 
R between pairs of spins on C3 and a coupling L between spins on C2. 

Using the star-triangle transformation, the partition function for the 
3-12 lattice containing 3N sites can be related to the partition function for 
an Ising model on a doubly decorated honeycomb lattice (DDH) contain- 
ing 4N sites as 

where 

Z3.~2(R, L) = A NZDDFI(L1, L) 

,~4 ~ - -  e4R(e4R + 3)2 

Here L1 is the coupling between a spin on a honeycomb lattice site and a 
spin on a neighboring decorated site. The parameters L 1 and R are related 
a s  

e 4 R  = 2 cosh 2L1 - 1 

Using the multiple decoration and iteration transformation, (6) one can 
in turn relate ZDDH(L~, L) tO the partition function for an Ising model on 
the honeycomb lattice (H) containing N sites as 

Zr~Dx-I(L~, L) = 13N/2 Zs(K)  

where 

12 = 4 sinh 2L sinh 2 2Ll/sinh 2K 
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Here K is the coupling constant between neighboring spins on the 
honeycomb lattice. 

Equations (4)-(6) of Section 3 relating Z3_~2(R, L) to ZH(K) then 
follow immediately. 

A P P E N D I X  B. AN EXACT EXPRESSION FOR o ' a _ l z  

If Z3q2(R , L) is the partition function of an Ising model on a 3-12 lat- 
tice containing 3N sites as given in Appendix A, then 

1 c3 R 
0"3_12 ~- (SiSjSi,jcc2- I n  Z3_12(R , L )  

3N/2 aL 

From Eqs. (4) (6), 

0"3_12 = ~ - - ~ - ~ l n Z M ( K ) - c o t h 2 K  + coth 2L 

The internal energy per spin for the Ising model on the honeycomb lattice 
is given as 

k T K  d 
U H - ~ dK  In ZH(K) 

Houtappel  ~1~ has obtained the exact expression 

U H / k T =  - K [ c o t h  2 K +  ~Kl(~c)] 

where e, K, and Kl(~C) are defined in Eqs. (9) (11). A calculation of 
aK/~3L} 1~ using Eq. (6) yields the exact result 

a3_12 = [2~K1(~c) sinh 2 K -  cosh 2K]/(3 sinh 2L) + coth 2L 
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